JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Improved specific loss power on cancer cells by hyperthermia and MRI contrast of hydrophilic Fe x Co 1-x Fe 2 O 4 nanoensembles.

Ferrite-based ferri/superparamagnetic nanoparticles can be rapidly heated by an external alternating magnetic field (AMF) to induce tissue necrosis of the adjacent microenvironment, but in addition provide magnetic resonance imaging (MRI) contrast utilizing enhanced water relaxivity. Here we characterized nanoensembles of Fe-Co mixed spinel ferrites (i.e. Fex Co1-x Fe2 O4 , where x ranges from 0.2 to 0.8) synthesized by chemical co-precipitation. With nanoensembles of increasing Co content the saturation magnetization improved, while lattice parameter remained relatively constant. MRI water (transverse) relaxivity at 11.7 T was also boosted with increasing Co content. Efficiency of AMF-induced heating was quite comparable for the nanoensembles with either chitosan or polyethylene glycol (PEG) coating except for PEG-coated Fe0.2 Co0.8 Fe2 O4 , which was twice as less efficient as others. While toxicity of the nanoensembles with either coating examined on 9L tumor cell cultures showed no significant differences, upon AMF exposure (i.e. heat-induced necrosis) Fex Co1-x Fe2 O4 composition with different values of x showed quite dramatic effects on cell death of tumor cells with both coatings. This study lays the ground work for further characterization of other mixed spinel ferrites, and in addition we expect that chitosan and PEG coated Fex Co1-x Fe2 O4 of all the compositions will have good potential for preclinical applications in vivo. Copyright © 2016 John Wiley & Sons, Ltd.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app