Add like
Add dislike
Add to saved papers

Virus-Like Particles Produced in Pichia Pastoris Induce Protective Immune Responses Against Coxsackievirus A16 in Mice.

BACKGROUND Coxsackievirus A16 (CA16) is one of the main causative agents of hand, foot, and mouth disease (HFMD), and the development of a safe and effective vaccine has been a top priority among CA16 researchers. MATERIAL AND METHODS In this study, we developed a Pichia pastoris yeast system for secretory expression of the virus-like particles (VLPs) for CA16 by co-expression of the P1 and 3CD proteins of CA16. SDS-PAGE, Western blot, and transmission electron microscopy (TEM) were performed to identify the formation of VLPs. Immunogenicity and vaccine efficacy of the CA16 VLPs were assessed in BABL/c mouse models. RESULTS Biochemical and biophysical analysis showed that the yeast-expressed CA16 VLPs were composed of VP0, VP1, and VP3 capsid subunit proteins, and present spherical particles with a diameter of 30 nm, similar to the parental infectious CA16 virus. Furthermore, CA16 VLPs elicited potent humoral and cellular immune responses, and VLPs-immunized sera conferred efficient protection to neonatal mice against lethal CA16 challenge. CONCLUSIONS Our results demonstrate that VLPs produced in Pichia pastoris represent a safe and effective vaccine strategy for CA16.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app