Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Cardiolipins Are Biomarkers of Mitochondria-Rich Thyroid Oncocytic Tumors.

Cancer Research 2016 November 16
Oncocytic tumors are characterized by an excessive eosinophilic, granular cytoplasm due to aberrant accumulation of mitochondria. Mutations in mitochondrial DNA occur in oncocytic thyroid tumors, but there is no information about their lipid composition, which might reveal candidate theranostic molecules. Here, we used desorption electrospray ionization mass spectrometry (DESI-MS) to image and chemically characterize the lipid composition of oncocytic thyroid tumors, as compared with nononcocytic thyroid tumors and normal thyroid samples. We identified a novel molecular signature of oncocytic tumors characterized by an abnormally high abundance and chemical diversity of cardiolipins (CL), including many oxidized species. DESI-MS imaging and IHC experiments confirmed that the spatial distribution of CLs overlapped with regions of accumulation of mitochondria-rich oncocytic cells. Fluorescent imaging and mitochondrial isolation showed that both mitochondrial accumulation and alteration in CL composition of mitochondria occurred in oncocytic tumors cells, thus contributing the aberrant molecular signatures detected. A total of 219 molecular ions, including CLs, other glycerophospholipids, fatty acids, and metabolites, were found at increased or decreased abundance in oncocytic, nononcocytic, or normal thyroid tissues. Our findings suggest new candidate targets for clinical and therapeutic use against oncocytic tumors. Cancer Res; 76(22); 6588-97. ©2016 AACR.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app