Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

UGT2B17 Expedites Progression of Castration-Resistant Prostate Cancers by Promoting Ligand-Independent AR Signaling.

Cancer Research 2016 November 16
Castration-resistant prostate cancer (CRPC) is characterized by a shift in androgen receptor (AR) signaling from androgen-dependent to androgen (ligand)-independent. UDP-glucuronosyltransferase 2B17 (UGT2B17) is a key enzyme that maintains androgen homeostasis by catabolizing AR agonists into inactive forms. Although enhanced UGT2B17 expression by antiandrogens has been reported in androgen-dependent prostate cancer, its roles in regulating AR signaling transformation and CRPC progression remain unknown. In this study, we show that higher UGT2B17 protein expression in prostate tumors is associated with higher Gleason score, metastasis, and CRPC progression. UGT2B17 expression and activity were higher in androgen-independent compared to androgen-dependent cell lines. UGT2B17 stimulated cancer cell proliferation, invasion, and xenograft progression to CRPC after prolonged androgen deprivation. Gene microarray analysis indicated that UGT2B17 suppressed androgen-dependent AR transcriptional activity and enhanced of ligand-independent transcriptional activity at genes associated with cell mitosis. These UGT2B17 actions were mainly mediated by activation of the c-Src kinase. In CRPC tumors, UGT2B17 expression was associated positively with c-Src activation. These results indicate that UGT2B17 expedites CRPC progression by enhancing ligand-independent AR signaling to activate cell mitosis in cancer cells. Cancer Res; 76(22); 6701-11. ©2016 AACR.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app