Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Silencing of Dok-7 in Adult Rat Muscle Increases Susceptibility to Passive Transfer Myasthenia Gravis.

Myasthenia gravis (MG) is an autoimmune disease mediated by autoantibodies that target proteins at the neuromuscular junction, primarily the acetylcholine receptor (AChR) and the muscle-specific kinase. Because downstream of kinase 7 (Dok-7) is essential for the full activation of muscle-specific kinase and consequently for dense clustering of AChRs, we hypothesized that reduced levels of Dok-7 increase the susceptibility to passive transfer MG. To test this hypothesis, Dok-7 expression was reduced by transfecting shRNA-coding plasmids into the tibialis anterior muscle of adult rats by in vivo electroporation. Subclinical MG was subsequently induced with a low dose of anti-AChR monoclonal antibody 35. Neuromuscular transmission was significantly impaired in Dok-7-siRNA-electroporated legs compared with the contralateral control legs, which correlated with a reduction of AChR protein levels at the neuromuscular junction (approximately 25%) in Dok-7-siRNA-electroporated muscles, compared with contralateral control muscles. These results suggest that a reduced expression of Dok-7 may play a role in the susceptibility to passive transfer MG, by rendering AChR clusters less resistant to the autoantibody attack.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app