JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Internalization of a novel, huge lectin from Ibacus novemdentatus (slipper lobster) induces apoptosis of mammalian cancer cells.

Glycoconjugate Journal 2017 Februrary
An N-acetyl sugar-binding lectin (termed iNoL) displaying cytotoxic activity against human cancer cells was isolated from the slipper lobster Ibacus novemdentatus (family Scyllaridae). iNoL recognized monosaccharides containing N-acetyl group, and glycoproteins (e.g., BSM) containing oligosaccharides with N-acetyl sugar. iNoL was composed of five subunits (330, 260, 200, 140, and 30 kDa), which in turn consisted of 70-, 40-, and 30-kDa polypeptides held together by disulfide bonds. Electron microscopic observations and gel permeation chromatography indicated that iNoL was a huge (500-kDa) molecule and had a polygonal structure under physiological conditions. iNoL displayed cytotoxic (apoptotic) effects against human cancer cell lines MCF7 and T47D (breast), HeLa (ovarian), and Caco2 (colonic), through incorporation (internalization) into cells. The lectin was transported into lysosomes via endosomes. Its cytotoxic effect and incorporation into cells were inhibited by the co-presence of N-acetyl-D-mannosamine (ManNAc). Treatment of HeLa cells with iNoL resulted in DNA fragmentation and chromatin condensation, through activation of caspase-9 and -3. In summary, the novel crustacean lectin iNoL is incorporated into mammalian cancer cells through glycoconjugate interaction, and has cytotoxic (apoptotic) effects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app