Add like
Add dislike
Add to saved papers

Dielectric properties of dog brain tissue measured in vitro across the 0.3-3 GHz band.

Bioelectromagnetics 2016 September 23
Dielectric properties of dead Greyhound female dogs' brain tissues at different ages were measured at room temperature across the frequency range of 0.3-3 GHz. Measurements were made on excised tissues, in vitro in the laboratory, to carry out dielectric tests on sample tissues. Each dataset for a brain tissue was parametrized using the Cole-Cole expression, and the relevant Cole-Cole parameters for four tissue types are provided. A comparison was made with the database available in literature for other animals and human brain tissue. Results of two types of tissues (white matter and skull) showed systematic variation in dielectric properties as a function of animal age, whereas no significant change related to age was noticed for other tissues. Results provide critical information regarding dielectric properties of animal tissues for a realistic animal head model that can be used to verify the validity and reliability of a microwave head scanner for animals prior to testing on live animals. Bioelectromagnetics. © 2016 Wiley Periodicals, Inc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app