Add like
Add dislike
Add to saved papers

Effect of maternal diabetes on gliogensis in neonatal rat hippocampus.

BACKGROUND: Diabetes in pregnancy is a common metabolic disorder associated with various adverse outcomes in the offspring including impairments in attention and memory and alterations in social behavior. Glial cells are proven to have a critical role in normal function of neurons, and alteration in their activity could contribute to disturbance in the brain function. The aim of this study was to investigate the effect of maternal diabetes on hippocampal mRNA expression and distribution pattern of glial fibrillary acidic protein (GFAP) immunoreactive glial cells in the dentate gyrus (DG) of rat neonate at postnatal day 14 (P14).

MATERIALS AND METHODS: Wistar female rats were randomly allocated in control, diabetic, and insulin-treated diabetic groups. Diabetes was induced by injection of streptozotocin from 4 weeks before gestation until parturition. After delivery, the male offspring was euthanized at P14.

RESULTS: Our results showed a significant higher level of hippocampal GFAP expression and an increase in the mean number of GFAP positive cells in the DG of diabetic group offspring (P < 0.05). We also found an insignificant up-regulation in the expression of GFAP and the mean number of positive cells in the insulin-treated diabetic group neonates as compared to control group (P > 0.05).

CONCLUSION: The present study revealed that diabetes during pregnancy strongly increased the glial cells production in the developing rat hippocampus.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app