Add like
Add dislike
Add to saved papers

In vivo study of alginate hydrogel conglutinating cells to polycaprolactone vascular scaffolds fabricated by electrospinning.

OBJECTIVE: The aim of this study was to explore an innovative cell-seeding technology applied on artificial vascular scaffolds.

METHODS: Scaffolds were fabricated by electrospinning polycaprolactone (PCL) and seeded with rat endothelial progenitor cells differentiated from adipose-derived stem cells. Then, we modified the PCL scaffolds through the use of alginate hydrogel conglutinating cells (AHCC), a blank alginate hydrogel coating (BAHC), and natural sedimentation seeding cells (NSSC). The blank PCL (BP) scaffolds without any modifications were considered the blank control group. After modification, the scaffolds were implanted in a rat model. The implanted scaffolds were harvested and observed using histological and immunohistochemical methods and scanning electron microscopy (SEM) at 1, 2, and 4 weeks after implantation, respectively.

RESULTS: The best regeneration and configuration of the endothelium tissue and the most similar morphology to that of natural endangium was observed qualitatively in the AHCC scaffolds. The BP scaffolds had qualitatively the worst regeneration and configuration and the most dissimilar morphology at the same time point. In the AHCC group, cells could adhere directly on the inner surface of the vascular scaffolds, eliminating the time delay via the NSSC method prior to cell adhesion.

CONCLUSION: AHCC are an effective method for seeding cells on vascular scaffolds and can eliminate the time delay for cell adhesion. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2443-2454, 2017.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app