JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Isomorphic coalescence of aster cores formed in vitro from microtubules and kinesin motors.

Physical Biology 2016 September 22
We report fluorescence microscopy studies of the formation of aster-like structures emerging from a cellular element-based active system and a novel analysis of the aster condensation. The system consists of rhodamine labeled microtubules which are dynamically coupled by functionalized kinesin motor proteins cross-linked via streptavidin-coated quantum dots (QDs). The aster-shaped objects contain core structures. The cores are aggregates of the QD-motor protein complexes, and result from the dynamic condensation of sub-clusters that are connected to each other randomly. The structural specificity of the aster core reflects a configuration of the initial connectivity between sub-clusters. Detailed image analysis allows us to extract a novel correlation between the condensation speed and the sub-cluster separation. The size of the core is scaled down during the condensation process, following a power law dependence on the distance between sub-clusters. The exponent of the power law is close to two, as expected from a geometric model. This single exponent common to all the contractile lines implies that there exists a time regime during which an isomorphic contraction of the aster core continues during the condensation process. We analyze the observed contraction by using a model system with potential applicability in a wide range of emergent phenomena in randomly coupled active networks, which are prevalent in the cellular environment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app