Add like
Add dislike
Add to saved papers

Effect of shrouding CH4 flow rate on flow field and stirring ability of coherent jet in steelmaking process.

Characteristics of flow field and stirring ability of coherent jet with various shrouding CH4 flow rates on the molten bath were studied by combustion experiment and numerical simulation. The axial velocity and total temperature distributions of coherent jet under hot (1700 K) and cold (298 K) ambient condition were analyzed. The Eddy Dissipation Concept model was used in simulation with detail chemical kinetic mechanisms, and the numerical simulation results were agreed well with the combustion experiment in this research. Based on the simulation and experiment results, when the CH4 rate was 230, 207 and 184 Nm(3)/h, their disparity rate of average velocity and total temperature was small than 5 and 6 %, respectively, at high ambient temperature. Hence, the same stirring effect might be achieved by those three kinds of CH4 flow rates in EAF steelmaking process. According to the industrial application research, the best CH4 flow rate is 184 Nm(3)/h, which could stir molten bath well and reduce energy consumption in steelmaking process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app