Add like
Add dislike
Add to saved papers

Splitting failure in side walls of a large-scale underground cavern group: a numerical modelling and a field study.

Vertical splitting cracks often appear in side walls of large-scale underground caverns during excavations owing to the brittle characteristics of surrounding rock mass, especially under the conditions of high in situ stress and great overburden depth. This phenomenon greatly affects the integral safety and stability of the underground caverns. In this paper, a transverse isotropic constitutive model and a splitting failure criterion are simultaneously proposed and secondly programmed in FLAC3D to numerically simulate the integral stability of the underground caverns during excavations in Dagangshan hydropower station in Sichuan province, China. Meanwhile, an in situ monitoring study on the displacement of the key points of the underground caverns has also been carried out, and the monitoring results are compared with the numerical results. From the comparative analysis, it can be concluded that the depths of splitting relaxation area obtained by numerical simulation are almost consistent with the actual in situ monitoring values, as well as the trend of the displacement curves, which shows that the transverse isotropic constitutive model combining with the splitting failure criterion is appropriate for investigating the splitting failure in side walls of large-scale underground caverns and it will be a helpful guidance of predicting the depths of splitting relaxation area in surrounding rock mass.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app