Add like
Add dislike
Add to saved papers

In vitro culture of rat hair follicle stem cells on rabbit bladder acellular matrix.

BACKGROUND: The aim of this work was to create a xenogeneic cell scaffold complex with rabbit bladder acellular matrix and rat hair follicle stem cells, to study the feasibility of construct tissue engineer bladder through biocompatibility of hair follicle stem cells and heterogeneous bladder acellular matrix.

MATERIAL AND METHODS: New Zealand rabbit bladder acellular matrix was prepared. Scanning electron microscope and Masson staining were used to analyse the acellular material. Two-steps precipitation method was used to place the third generation of hair follicle stem cells onto the surface of the bladder acellular matrix. The in vitro cell growth on the scaffold complex was regularly monitored through an inverted microscope. Cell growth curve was established and histological examination and scanning electron microscopic were used to analyse the progresses of the cell growth on the matrix material.

RESULTS: The prepared bladder acellular matrix was white, translucent and membranous. It possessed a fibrous network and collagen structure without any significant cell residues as displayed by the scanning electron microscope, and Masson staining. After 48 h of culture, observation by inverted microscope showed that the hair follicle stem cells grew well around the bladder acellular matrix. After 1 week of culture, scanning electron microscopy showed that the hair follicle stem cells spread and adhered on the surface of the scaffold.

CONCLUSIONS: The in vitro culture of rat hair follicle stem cells and the rabbit bladder acellular matrix possessed a good biocompatibility, which provides a good experiment support for hair follicle stem cells to repair the bladder defects disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app