Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Morphologic and transcriptomic assessment of bovine embryos exposed to dietary long-chain fatty acids.

Reproduction 2016 December
The main objectives of this study were to determine the influence of diets enriched in α-linolenic, linoleic or oleic acid on the development and transcriptomic profile of embryos collected from dairy cattle. Non-lactating Holstein cows received one of the three diets supplemented with 8% rolled oilseeds: flax (FLX, n = 8), sunflower (SUN, n = 7) or canola (CAN, n = 8). After a minimum 35-day diet adaptation, cows were superovulated, artificially inseminated and ova/embryos recovered non-surgically after 7.5 days. Cows fed FLX had less degenerated embryos and more viable embryos than those fed CAN or SUN. In total, 175 genes were differentially expressed in blastocysts from cows fed FLX than in cows fed CAN or SUN. These differentially expressed genes were mainly involved in cellular growth and proliferation, cellular development, and cell survival and viability. In conclusion, dietary n-3 polyunsaturated fatty acids reduced early embryonic degeneration possibly through improving embryonic cell survival and viability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app