Journal Article
Observational Study
Add like
Add dislike
Add to saved papers

Phenotypic shift in Pseudomonas aeruginosa populations from cystic fibrosis lungs after 2-week antipseudomonal treatment.

BACKGROUND: The influence of suppressive therapy on the different P. aeruginosa phenotypes harbored in the lungs of cystic fibrosis (CF) patients remains unclear. Our aim was to investigate the phenotypic changes (mucoidy, hypermutability, antibiotic resistance, transcriptomic profiles and biofilm) in P. aeruginosa populations before and after a 2-week course of suppressive antimicrobial therapy in chronically infected CF patients in Denmark.

MATERIAL AND METHODS: Prospective observational clinical study. Sputum samples were assessed before and after treatment for P. aeruginosa, with regard to: a) colony-forming units (CFU/mL), b) frequency of mucoids and non-mucoids, c) resistance pattern to anti-pseudomonal drugs, d) hypermutability, e) transcriptomic profiles, and f) presence of biofilms.

RESULTS: We collected 23 sputum samples (12 before antibiotic treatment and 11 after) and 77 P. aeruginosa from different CF patients. After treatment, the P. aeruginosa burden diminished but antimicrobial resistance to aztreonam, tobramycin and ceftazidime rose; non-mucoid phenotypes presented increased resistance to colistin, tobramycin, meropenem, and ciprofloxacin, and hypermutable phenotypes to ciprofloxacin. In spite of biofilm persistence, a down-regulation of genes involved in denitrification was detected.

CONCLUSION: A 2-week course of suppressive therapy reduces P. aeruginosa lung colonization and influences nitrogen metabolism genes, but also promotes antimicrobial resistance while P. aeruginosa persists in biofilms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app