Add like
Add dislike
Add to saved papers

Dynamical Bifurcation in Gas-Phase XH - + CH 3 Y S N 2 Reactions: The Role of Energy Flow and Redistribution in Avoiding the Minimum Energy Path.

The gas-phase reactions of XH- (X=O, S) + CH3 Y (Y=F, Cl, Br) span nearly the whole range of SN 2 pathways, and show an intrinsic reaction coordinate (IRC) (minimum energy path) with a deep well owing to the CH3 XH⋅⋅⋅Y- (or CH3 S- ⋅⋅⋅HF) hydrogen-bonded postreaction complex. MP2 quasiclassical-type direct dynamics starting at the [HX⋅⋅⋅CH3 ⋅⋅⋅Y]- transition-state (TS) structure reveal distinct mechanistic behaviors. Trajectories that yield the separated CH3 XH+Y- (or CH3 S- +HF) products directly are non-IRC, whereas those that sample the CH3 XH⋅⋅⋅Y- (or CH3 S- ⋅⋅⋅HF) complex are IRC. The IRCIRC/non-IRC ratios of 90:10, 40:60, 25:75, 2:98, 0:100, and 0:100 are obtained for (X, Y)=(S, F), (O, F), (S, Cl), (S, Br), (O, Cl), and (O, Br), respectively. The properties of the energy profiles after the TS cannot provide a rationalization of these results. Analysis of the energy flow in dynamics shows that the trajectories cross a dynamical bifurcation, and that the inability to follow the minimum energy path arises from long vibration periods of the X-C⋅⋅⋅Y bending mode. The partition of the available energy to the products into vibrational, rotational, and translational energies reveals that if the vibrational contribution is more than 80 %, non-IRC behavior dominates, unless the relative fraction of the rotational and translational components is similar, in which case a richer dynamical mechanism is shown, with an IRC/non-IRC ratio that correlates to this relative fraction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app