Add like
Add dislike
Add to saved papers

Motoneuron glutamatergic receptor expression following recovery from cervical spinal hemisection.

Cervical spinal hemisection at C2 (SH) removes premotor drive to phrenic motoneurons located in segments C3-C5 in rats. Spontaneous recovery of ipsilateral diaphragm muscle activity is associated with increased phrenic motoneuron expression of glutamatergic N-methyl-D-aspartate (NMDA) receptors and decreased expression of α-amino-3-hydroxy-5-methylisoxazole-4-proprionic acid (AMPA) receptors. Glutamatergic receptor expression is regulated by tropomyosin-related kinase receptor subtype B (TrkB) signaling in various neuronal systems, and increased TrkB receptor expression in phrenic motoneurons enhances recovery post-SH. Accordingly, we hypothesize that recovery of ipsilateral diaphragm muscle activity post-SH, whether spontaneous or enhanced by adenoassociated virus (AAV)-mediated upregulation of TrkB receptor expression, is associated with increased expression of glutamatergic NMDA receptors in phrenic motoneurons. Adult male Sprague-Dawley rats underwent diaphragm electromyography electrode implantation and SH surgery. Rats were injected intrapleurally with AAV expressing TrkB or GFP 3 weeks before SH. At 14 days post-SH, the proportion of animals displaying recovery of ipsilateral diaphragm activity increased in AAV-TrkB-treated (9/9) compared with untreated (3/5) or AAV-GFP-treated (4/10; P < 0.027) animals. Phrenic motoneuron NMDA NR1 subunit mRNA expression was approximately fourfold greater in AAV-TrkB- vs. AAV-GFP-treated SH animals (P < 0.004) and in animals displaying recovery vs. those not recovering (P < 0.005). Phrenic motoneuron AMPA glutamate receptor 2 (GluR2) subunit mRNA expression decreased after SH, and, albeit increased in animals displaying recovery vs. those not recovering, levels remained lower than control. We conclude that increased phrenic motoneuron expression of glutamatergic NMDA receptors is associated with spontaneous recovery after SH and enhanced recovery after AAV-TrkB treatment. J. Comp. Neurol. 525:1192-1205, 2017. © 2016 Wiley Periodicals, Inc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app