JOURNAL ARTICLE
RANDOMIZED CONTROLLED TRIAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Reduction in liver fat by dietary MUFA in type 2 diabetes is helped by enhanced hepatic fat oxidation.

Diabetologia 2016 December
AIMS/HYPOTHESIS: The aim of this work was to investigate hepatic lipid metabolic processes possibly involved in the reduction of liver fat content (LF) observed in patients with type 2 diabetes after an isoenergetic diet enriched in monounsaturated fatty acids (MUFAs).

METHODS: This is an ancillary analysis of a published study. In a parallel-group design, 30 men and eight women, aged 35-70 years, with type 2 diabetes and whose blood glucose was controlled satisfactorily (HbA1c  < 7.5% [58 mmol/mol]) by diet or diet plus metformin, were randomised by MINIM software to follow either a high-carbohydrate/high-fibre/low-glycaemic index diet (CHO/fibre diet, n = 20) or a high-MUFA diet (MUFA diet, n = 18) for 8 weeks. The assigned diets were known for the participants and blinded for people doing measurements. Before and after intervention, LF was measured by 1 H-MRS (primary outcome) and indirect indices of de novo lipogenesis (DNL) (serum triacylglycerol palmitic:linoleic acid ratio), stearoyl-CoA desaturase activity (SCD-1) (serum triacylglycerol palmitoleic:palmitic acid ratio) and hepatic β-oxidation of fatty acids (β-hydroxybutyrate plasma concentrations) were measured.

RESULTS: LF was reduced by 30% after the MUFA diet, as already reported. Postprandial β-hydroxybutyrate incremental AUC (iAUC) was significantly less suppressed after the MUFA diet (n = 16) (-2504 ± 4488 μmol/l × 360 min vs baseline -9021 ± 6489 μmol/l × 360 min) while it was unchanged after the CHO/fibre diet (n = 17) (-8168 ± 9827 μmol/l × 360 min vs baseline -7206 ± 10,005 μmol/l × 360 min, p = 0.962) (mean ± SD, p = 0.043). In the participants assigned to the MUFA diet, the change in postprandial β-hydroxybutyrate iAUC was inversely associated with the change in LF (r = -0.642, p = 0.010). DNL and SCD-1 indirect indices did not change significantly after either of the dietary interventions.

CONCLUSIONS/INTERPRETATION: Postprandial hepatic oxidation of fatty acids is a metabolic process possibly involved in the reduction of LF by a MUFA-rich diet in patients with type 2 diabetes.

TRIAL REGISTRATION: ClinicalTrials.gov NCT01025856 FUNDING : The study was funded by Ministero Istruzione Università e Ricerca and Italian Minister of Health.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app