Add like
Add dislike
Add to saved papers

Characterization of 4 TaGAST genes during spike development and seed germination and their response to exogenous phytohormones in common wheat.

Gibberellic acid (GA) is involved in the regulation of plant growth and development. We defined GA-stimulated transcript (GAST) gene family and characterized its four members (TaGAST1, 2, 3, and 4) in wheat spikes. Triticum aestivum whole spikes were collected at ten developmental stages and dehulled spikelets were obtained at various days after flowering. Expression of TaGAST1, 2, 3, and 4 was analyzed using RT-PCR at inflorescence development stages, in different tissues, and after phytohormones application. To identify proteins interacting with TaGAST1, yeast two-hybridization was performed and BiFC analysis was used for verification. TaGAST1 was expressed at the inflorescence stage and only expressed in seedlings under abscisic acid (ABA) treatment after phytohormone treatment. TaGAST2 and TaGAST3 showed moderate expression in the spike, vigorous transcript accumulation in the seedling, and up-regulation by exogenous GA in early germination stages. TaGAST4 was predominantly expressed in the seedling. Wheat cyclophilin A-1 (TaCypA1), identified as a TaGAST1-interacting protein, showed opposite expression pattern in the developing spike to TaGAST1. TaCypA1 transcript was slightly up-regulated by GA, slightly down-regulated by paclobutrazol, and was maintained after ABA treatment. The interaction of TaGAST1 with TaCypA1 is targeted to the plasma membrane. TaGAST1 was specifically expressed in the wheat spike and was stimulated by exogenous GA treatment. TaGAST2 and TaGAST3 expression in germinating seeds and seedlings was higher than that in the spike stage. TaGAST4 was not expressed in all developmental stages. TaGAST1 and TaCypA1 might be expressed antagonistically during wheat spike development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app