Journal Article
Review
Add like
Add dislike
Add to saved papers

Lipids rich in ω-3 polyunsaturated fatty acids from microalgae.

Despite microalgae recently receiving enormous attention as a potential source of biodiesel, their use is still not feasible as an alternative to fossil fuels. Recently, interest in microalgae has focused on the production of bioactive compounds such as polyunsaturated fatty acids (PUFA), which provide microalgae a high added value. Several considerations need to be assessed for optimizing PUFA production from microalgae. Firstly, a microalgae species that produces high PUFA concentrations should be selected, such as Nannochloropsis gaditana, Isochrysis galbana, Phaeodactylum tricornutum, and Crypthecodinium cohnii, with marine species gaining more attention than do freshwater species. Closed cultivation processes, e.g., photobioreactors, are the most appropriate since temperature, pH, and nutrients can be controlled. An airlift column with LEDs or optical fibers to distribute photons into the culture media can be used at small scale to produce inoculum, while tubular and flat panels are used at commercial scale. Depending on the microalgae, a temperature range from 15 to 28 °C and a pH from 7 to 8 can be employed. Relevant conditions for PUFA production are medium light irradiances (50-300 μmol photons m(-2) s(-1)), air enriched with (0-1 % (v/v) CO2, as well as nitrogen and phosphorous limitation. For research purposes, the most appropriate medium for PUFA production is Bold's Basal, whereas mixotrophic cultivation using sucrose or glucose as the carbon source has been reported for industrial processes. For cell harvesting, the use of tangential flow membrane filtration or disk stack centrifugation is advisable at commercial scale. Current researches on PUFA extraction have focused on the use of organic solvents assisted with ultrasound or microwaves, supercritical fluids, and electroporation or are enzyme assisted. Commercial-scale extraction involves mainly physical methods such as bead mills and expeller presses. All these factors should be taken into account when choosing a PUFA production system, as discussed in this review.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app