Add like
Add dislike
Add to saved papers

FEREBUS: Highly parallelized engine for kriging training.

FFLUX is a novel force field based on quantum topological atoms, combining multipolar electrostatics with IQA intraatomic and interatomic energy terms. The program FEREBUS calculates the hyperparameters of models produced by the machine learning method kriging. Calculation of kriging hyperparameters (θ and p) requires the optimization of the concentrated log-likelihood L̂(θ,p). FEREBUS uses Particle Swarm Optimization (PSO) and Differential Evolution (DE) algorithms to find the maximum of L̂(θ,p). PSO and DE are two heuristic algorithms that each use a set of particles or vectors to explore the space in which L̂(θ,p) is defined, searching for the maximum. The log-likelihood is a computationally expensive function, which needs to be calculated several times during each optimization iteration. The cost scales quickly with the problem dimension and speed becomes critical in model generation. We present the strategy used to parallelize FEREBUS, and the optimization of L̂(θ,p) through PSO and DE. The code is parallelized in two ways. MPI parallelization distributes the particles or vectors among the different processes, whereas the OpenMP implementation takes care of the calculation of L̂(θ,p), which involves the calculation and inversion of a particular matrix, whose size increases quickly with the dimension of the problem. The run time shows a speed-up of 61 times going from single core to 90 cores with a saving, in one case, of ∼98% of the single core time. In fact, the parallelization scheme presented reduces computational time from 2871 s for a single core calculation, to 41 s for 90 cores calculation. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app