Add like
Add dislike
Add to saved papers

Design and evaluation of acrylate polymeric carriers for fabrication of pH-sensitive microparticles.

Colon-targeted microparticles loaded with a model anti-inflammatory drug were fabricated using especially designed acrylic acid-butyl methacrylate copolymers. Microparticles were prepared by oil-in-oil solvent evaporation method using Span 80 as emulsifier. Microparticles were found to be spherical in shape, hemocompatible and anionic with zeta potential of -27.4 and -29.0 mV. Entrapment of drug in the microparticles was confirmed by Fourier transform infrared (FTIR) spectroscopy. However, X-ray diffraction (XRD) and differential scanning calorimetry (DSC) revealed amorphous nature of microparticles due to the dilution effect of amorphous polymer. The microparticles released less than 5% drug at pH 1.2, while more than 90% of the drug load was released at pH 7.4. This suggested the colon targeting nature of the formulations. In experimentally developed colitis in Wistar rats, the microparticle formulation showed significant reduction (p < .05) in the disease activity score (disease symptoms), the colon-to-body weight ratio (tissue edema) and the myeloperoxidase, tumor necrosis factor (TNF)-α and interleukin (IL)-1β activities.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app