Add like
Add dislike
Add to saved papers

Antioxidant and cytotoxic lignans from the roots of Bupleurum chinense.

In the search for biologically active compounds from the roots of Bupleurum chinense D C., phytochemical investigation of its ethanol extract led to the isolation and identification of a new 8-O-4' neolignan glucoside, saikolignanoside A (1), along with eight known lignans (2-9). Their structures were determined on the basis of IR, UV, HRESIMS, and NMR spectroscopic analyses. The antioxidant and cytotoxic effects of isolated compounds were evaluated in vitro. The isolated compounds (IC50 > 200 μM) did not display 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity. Whereas compounds 1-2, 5, 7, and 9 exhibited potent 2, 2'-azinobis(3-ethyl-benzothiazoline-6-sulfonic acid) (ABTS) free radical scavenging properties with IC50 values ranging from 8.34 to 15.24 μM, while compounds 3-4, 6, 8 showed moderate properties. In addition, all compounds were evaluated for cytotoxicities against A549, HepG2, U251, Bcap-37, and MCF-7 cell lines. Compounds 5 and 9 (IC50 < 51.62 μM) possessed stronger cytotoxic activities against all the tested tumor cell lines, compared with the positive control 5-Fluorouracil.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app