Add like
Add dislike
Add to saved papers

Extracellular Vesicles Released from Human Umbilical Cord-Derived Mesenchymal Stromal Cells Prevent Life-Threatening Acute Graft-Versus-Host Disease in a Mouse Model of Allogeneic Hematopoietic Stem Cell Transplantation.

Mesenchymal stromal cells (MSCs) are attractive agents for the prophylaxis of acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation (allo-HSCT). However, safety concerns remain about their clinical application. In this study, we explored whether extracellular vesicles released from human umbilical cord-derived MSCs (hUC-MSC-EVs) could prevent aGVHD in a mouse model of allo-HSCT. hUC-MSC-EVs were intravenously administered to recipient mice on days 0 and 7 after allo-HSCT, and the prophylactic effects of hUC-MSC-EVs were assessed by observing the in vivo manifestations of aGVHD, histologic changes in target organs, and recipient mouse survival. We evaluated the effects of hUC-MSC-EVs on immune cells and inflammatory cytokines by flow cytometry and ProcartaPlex™ Multiplex Immunoassays, respectively. The in vitro effects of hUC-MSC-EVs were determined by mitogen-induced proliferation assays. hUC-MSC-EVs alleviated the in vivo manifestations of aGVHD and the associated histologic changes and significantly reduced the mortality of the recipient mice. Recipients treated with hUC-MSC-EVs had significantly lower frequencies and absolute numbers of CD3(+)CD8(+) T cells; reduced serum levels of IL-2, TNF-α, and IFN-γ; a higher ratio of CD3(+)CD4(+) and CD3(+)CD8(+) T cells; and higher serum levels of IL-10. An in vitro experiment demonstrated that hUC-MSC-EVs inhibited the mitogen-induced proliferation of splenocytes in a dose-dependent manner, and the cytokine changes were similar to those observed in vivo. This study indicated that hUC-MSC-EVs can prevent life-threatening aGVHD by modulating immune responses. These data provide the first evidence that hUC-MSC-EVs represent an ideal alternative in the prophylaxis of aGVHD after allo-HSCT.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app