EVALUATION STUDIES
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Electroactive and biocompatible functionalization of graphene for the development of biosensing platforms.

Design and synthesis of low-cost, highly stable, electroactive and biocompatible material is one of the key steps for the advancement of electrochemical biosensing systems. To this end, we have explored a facile way for the successful synthesis of redox active and bioengineering of reduced graphene oxide (RGO) for the development of versatile biosensing platform. A highly branched polymer (PEI) is used for reduction and simultaneous derivation of graphene oxide (GO) to form a biocompatible polymeric matrix on RGO nanosheet. Ferrocene redox moieties are then wired onto RGO nanosheets through the polymer matrix. The as-prepared functional composite is electrochemically active and enables to accommodate enzymes stably. For proof-of-concept studies, two crucial redox enzymes for biosensors (i.e. cholesterol oxidase and glucose oxidase) are targeted. The enzyme integrated and RGO supported biosensing hybrid systems show high stability, excellent selectivity, good reproducibility and fast sensing response. As measured, the detection limit of the biosensors for glucose and cholesterol is 5µM and 0.5µM (S/N=3), respectively. The linear response range of the biosensor is from 0.1 to 15.5mM for glucose and from 2.5 to 25µM for cholesterol. Furthermore, this biosensing platform shows good anti-interference ability and reasonable stability. The nanohybrid biosensing materials can be combined with screen-printed electrodes, which are successfully used for measuring the glucose and cholesterol level of real human serum samples.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app