LETTER
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

DNA-Programmed Quantum Dot Polymerization for Ultrasensitive Molecular Imaging of Cancer Cells.

Analytical Chemistry 2016 October 5
Inorganic nanocrystals, such as quantum dots (QDs), hold great promise as molecular imaging contrast agents because of their superior optical properties. However, the molecular imaging sensitivity of these probes is far from optimized due to the lack of efficient and general method for molecular engineering of nanocrystal into effective bioprobes for signal-amplified imaging. Herein, we develop a strategy to boost the molecular imaging sensitivity of QDs over the limit by copolymerizing QDs and cell-binding aptamers into linear QD-aptamer polymers (QAPs) through DNA-programmed hybridization chain reaction. We show that the cancer cells treated with QAPs exhibit much stronger photoluminescence (PL) signal than those treated with QD-aptamer monomers (QAMs) because of multivalent binding and multi-QD-based signal amplification. The enhanced cell binding and imaging capacity of QAPs significantly improves imaging-based discrimination between different cancer cell types. This approach adds a new dimension for engineering inorganic nanoparticles into effective bioprobes for biomedical applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app