Add like
Add dislike
Add to saved papers

Mechanical Enhancement of Sensitivity in Natural Rubber Using Electrolytic Polymerization Aided by a Magnetic Field and MCF for Application in Haptic Sensors.

Sensors 2016 September 19
Sensors are essential to the fulfillment of every condition of haptic technology, and they need simultaneously to sense shear stress as well as normal force, and temperature. They also must have a strong and simple structure, softness, and large extension. To achieve these conditions simultaneously, we enhanced the sensitivity of sensors utilizing natural rubber (NR)-latex through the application of electrolytic polymerization focused on the isoprene C=C bonds in natural rubbers such as NR-latex, and then applied a magnetic field and magnetic compound fluid (MCF) as magnetically responsive fluid. When an electric field alone was used in the rubber, the effect of electrolytic polymerization was very small compared to the effect in well-known conductive polymer solution such as plastic. The MCF developed by Shimada in 2001 involved magnetite and metal particles, and acts as a filler in NR-latex. By utilizing the magnetic, electric fields and the MCF, we aligned the electrolytically polymerized C=C along the magnetic field line with the magnetic clusters formed by the aggregation of magnetite and metal particles so as to enhance the effect of electrolytic polymerization. We then demonstrated the effectiveness of the new method of rubber vulcanization on the sensitivity of the rubber by experimentally investigating its electric and dynamic characteristics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app