Add like
Add dislike
Add to saved papers

Extension of the dissolution-precipitation model for kinetic elucidation of solvent-mediated polymorphic transformations.

Thorough understanding and control of the different crystal forms of a drug product is key for fine chemistry and materials science; it ultimately determines the product's physicochemical properties and performance. In this work, we extend the application of a mechanistic dissolution-precipitation model to solvent-mediated solid form transformations. To address the relevance of the model, various kinetic solvent-mediated polymorphic transition studies were retrieved from the literature. Our model succeeds in accurately describing the experimental data, shedding light on the molecular steps driving the polymorphic conversion. Given its simplicity and mechanistic character, the model can be viewed as a useful tool to monitor, predict and optimize the solvent-mediated transformations of solid forms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app