Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

A statistical model of the penetrating arterioles and venules in the human cerebral cortex.

OBJECTIVE: Models of the cerebral microvasculature are required at many different scales in order to understand the effects of microvascular topology on CBF. There are, however, no data-driven models at the arteriolar/venular scale. In this paper, we develop a data-driven algorithm based on available data to generate statistically accurate penetrating arterioles and venules.

METHODS: A novel order-based density-filling algorithm is developed based on the statistical data including bifurcating angles, LDRs, and area ratios. Three thousand simulations are presented, and the results validated against morphological data. These are combined with a previous capillary network in order to calculate full vascular network parameters.

RESULTS: Statistically accurate penetrating trees were successfully generated. All properties provided a good fit to experimental data. The k exponent had a median of 2.5 and an interquartile range of 1.75-3.7. CBF showed a standard deviation ranging from ±18% to ±34% of the mean, depending on the penetrating vessel diameter.

CONCLUSIONS: Small CBF variations indicate that the topology of the penetrating vessels plays only a small part in the large regional variations of CBF seen in the brain. These results open up the possibility of efficient oxygen and blood flow simulations at MRI voxel scales which can be directly validated against MRI data.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app