Add like
Add dislike
Add to saved papers

Hypermetabolism in B-lymphocytes from malignant hyperthermia susceptible individuals.

Scientific Reports 2016 September 21
Malignant hyperthermia (MH) is a pharmacogenetic disorder of skeletal muscle metabolism which is characterized by generalized muscle rigidity, increased body temperature, rhabdomyolysis, and severe metabolic acidosis. The underlying mechanism of MH involves excessive Ca(2+) release in myotubes via the ryanodine receptor type 1 (RyR1). As RyR1 is also expressed in B-lymphocytes, this study investigated whether cellular metabolism of native B-lymphocytes was also altered in MH susceptible (MHS) individuals. A potent activator of RyR1, 4-chloro-m-cresol (4-CmC) was used to challenge native B-lymphocytes in a real-time, metabolic assay based on a pH-sensitive silicon biosensor chip. At the cellular level, a dose-dependent, phasic acidification occurred with 4-CmC. The acidification rate, an indicator of metabolic activation, was significantly higher in B-lymphocytes from MHS patients and required 3 to 5 fold lower concentrations of 4-CmC to evoke similar acidification rates to MHN. Native B-lymphocytes from MHS individuals are more sensitive to 4-CmC than those from MHN, reflecting a greater Ca(2+) turnover. The acidification response, however, was less pronounced than in muscle cells, presumably reflecting the lower expression of RyR1 in B-lymphocytes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app