Add like
Add dislike
Add to saved papers

Collecting Quality Infrared Spectra from Microscopic Samples of Suspicious Powders in a Sealed Cell.

The infrared (IR) microspectroscopical analysis of samples within a sealed-cell containing barium fluoride is a critical need when identifying toxic agents or suspicious powders of unidentified composition. The dispersive nature of barium fluoride is well understood and experimental conditions can be easily adjusted during reflection-absorption measurements to account for differences in focus between the visible and IR regions of the spectrum. In most instances, the ability to collect a viable spectrum is possible when using the sealed cell regardless of whether visible or IR focus is optimized. However, when IR focus is optimized, it is possible to collect useful data from even smaller samples. This is important when a minimal sample is available for analysis or the desire to minimize risk of sample exposure is important. While the use of barium fluoride introduces dispersion effects that are unavoidable, it is possible to adjust instrument settings when collecting IR spectra in the reflection-absorption mode to compensate for dispersion and minimize impact on the quality of the sample spectrum.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app