Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Moxifloxacin Is a Potent In Vitro Inhibitor of OCT- and MATE-Mediated Transport of Metformin and Ethambutol.

It is largely unknown if simultaneous administration of tuberculosis (TB) drugs and metformin leads to drug-drug interactions (DDIs). Disposition of metformin is determined by organic cation transporters (OCTs) and multidrug and toxin extrusion proteins (MATEs). Thus, any DDIs would primarily be mediated via these transporters. This study aimed to assess the in vitro inhibitory effects of TB drugs (rifampin, isoniazid, pyrazinamide, ethambutol, amikacin, moxifloxacin, and linezolid) on metformin transport and whether TB drugs are also substrates themselves of OCTs and MATEs. HEK293 cells overexpressing OCT1, OCT2, OCT3, MATE1, and MATE2K were used to study TB drug-mediated inhibition of [14 C]metformin uptake and to test if TB drugs are transporter substrates. Metformin uptake was determined by quantifying [14 C]metformin radioactivity, and TB drug uptake was analyzed using liquid chromatography-tandem mass spectrometry. DDI indices were calculated (plasma maximum concentrations [Cmax ]/50% inhibitory concentrations [IC50 ]), and based on the literature, a cutoff of >0.1 was assumed to warrant further in vivo investigation. Moxifloxacin was the only TB drug identified as a potent inhibitor (DDI index of >0.1) of MATE1- and MATE2K-mediated metformin transport, with IC50 s of 12 μM (95% confidence intervals [CI], 5.1 to 29 μM) and 7.6 μM (95% CI, 0.2 to 242 μM), respectively. Of all TB drugs, only ethambutol appeared to be a substrate of OCT1, OCT2, OCT3, MATE1, and MATE2K. MATE1-mediated ethambutol uptake was inhibited strongly (DDI index of >0.1) by moxifloxacin (IC50 , 12 μM [95% CI, 3.4 to 43 μM]). Our findings provide a mechanistic basis for DDI predictions concerning ethambutol. According to international guidelines, an in vivo interaction study is warranted for the observed in vitro interaction between ethambutol and moxifloxacin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app