Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Complex Inversion of MRT Signals under Different Loop Configurations for Groundwater Exploration.

Ground Water 2017 March
Surface nuclear magnetic resonance (SNMR) is a relatively new geophysical method for non-invasive groundwater exploration and aquifer characterization. Conventional SNMR surveys based on one-dimensional (1-D) inversion of amplitude data recorded only using coincident loops provide limited or distorted groundwater distribution information, especially in regions with strong lateral heterogeneity and complicated hydrological environments. The simplistic approach limits the applicability and efficiency of SNMR, which was therefore made more effective in this study using a sophisticated signal response formulation. The elliptical polarization parameters of the excitation magnetic fields and 2-D sensitivity kernels (including real and imaginary parts) of three commonly used loop configurations were first calculated. After all the individual complex signals of five simulated measurement series along a profile were incorporated. The 2-D magnetic resonance tomography (MRT) complex inversion scheme was then used to perform high resolution tomography of synthetic models under the three loop configurations, taking full advantage of the different sensitivity distributions offered by the different loop configurations and the high sensitivity of the imaginary parts of signals to deep structures. Contrast analyses of the tomographic results showed that the complex inversions significantly decreased model ambiguities and increased depth resolution even with artificial noise added. Coincident loop measurements usually gave the best vertical resolution, and separated loops provided better lateral resolution. However, various factors would influence phase data, meaning that the complex inversion of field data is neither very reliable nor very common at present.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app