Add like
Add dislike
Add to saved papers

Monte Carlo based investigations of electron contamination from telecobalt unit head in build up region and its impact on surface dose.

A Telecobalt unit has wide range of applications in cancer treatments and is used widely in many countries all around the world. Estimation of surface dose in Cobalt-60 teletherapy machine becomes important since clinically useful photon beam consist of contaminated electrons during the patient treatment. EGSnrc along with the BEAMnrc user code was used to model the Theratron 780E telecobalt unit. Central axis depth dose profiles including surface doses have been estimated for the field sizes of 0×0, 6×6, 10×10, 15×15, 20×20, 25×25, 30×30cm2 and at Source-to-surface distance (SSD) of 60 and 80cm. Surface dose was measured experimentally by the Gafchromic RTQA2 films and are in good agreement with the simulation results. The central axis depth dose data are compared with the data available from the British Journal of Radiology report no. 25. Contribution of contaminated electrons has also been calculated using Monte Carlo simulation by the different parts of the Cobalt-60 head for different field size and SSD's. Moreover, depth dose curve in zero area field size is calculated by extrapolation method and compared with the already published data. They are found in good agreement.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app