Add like
Add dislike
Add to saved papers

Surface Tensions of Ionic Liquids: Non-Regular Trend Along the Number of Cyano Groups.

Fluid Phase Equilibria 2016 Februrary 16
Ionic liquids (ILs) with cyano-functionalized anions are a set of fluids that are still poorly characterized despite their remarkably low viscosities and potential applications. Aiming at providing a comprehensive study on the influence of the number of -CN groups through the surface tension and surface organization of ILs, the surface tensions of imidazolium-based ILs with cyano-functionalized anions were determined at atmospheric pressure and in the (298.15 to 343.15) K temperature range. The ILs investigated are based on 1-alkyl-3-methylimidazolium cations (alkyl = ethyl, butyl and hexyl) combined with the [SCN](-), [N(CN)2](-), [C(CN)3](-) and [B(CN)4](-)anions. Although the well-known trend regarding the surface tension decrease with the increase of the size of the aliphatic moiety at the cation was observed, the order obtained for the anions is more intricate. For a common cation and at a given temperature, the surface tension decreases according to: [N(CN)2](-) > [SCN](-) > [C(CN)3](-) > [B(CN)4](-). Therefore, the surface tension of this homologous series does not decrease with the increase of the number of -CN groups at the anion as has been previously shown by studies performed with a more limited matrix of ILs. A maximum in the surface tension and critical temperature was observed for [N(CN)2]-based ILs. Furthermore, a minimum in the surface entropy, indicative of a highly structured surface, was found for the same class of ILs. All these evidences seem to be a result of stronger hydrogen-bonding interactions occurring in [N(CN)2]-based ILs, when compared with the remaining CN-based counterparts, and as sustained by cation-anion interaction energies derived from the Conductor Like Screening Model for Real Solvents (COSMO-RS).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app