Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Protective effect of gedunin on TLR-mediated inflammation by modulation of inflammasome activation and cytokine production: Evidence of a multitarget compound.

Activation of toll-like receptors (TLRs) by pathogen-associated molecular patterns (PAMPs) triggers an innate immune response, via cytokine production and inflammasome activation. Herein, we have investigated the modulatory effect of the natural limonoid gedunin on TLR activation in vitro and in vivo. Intraperitoneal (i.p.) pre- and post-treatments of C57BL/6 mouse with gedunin impaired the influx of mononuclear cells, eosinophils and neutrophils, as well as the production of tumor necrosis factor (TNF)-α, interleukin (IL)-6 and nitric oxide (NO), triggered by lipopolysaccharide (LPS) in mouse pleura. Accordingly, in vitro post-treatment of immortalized murine macrophages with gedunin also impaired LPS-induced production of such mediators. Gedunin diminished LPS-induced expression of the nucleotide-binding domain and leucine-rich repeat protein-3 (NLRP3) on pleural leukocytes in vivo and in immortalized macrophages in vitro. In line with this, gedunin inhibited LPS-induced caspase-1 activation and the production of IL-1β in vivo and in vitro. In addition, gedunin treatment triggered the generation of the anti-inflammatory factors IL-10 and heme oxigenase-1 (HO-1) at resting conditions or upon stimulation. We also demonstrate that gedunin effect is not restricted to TLR4-mediated response, since this compound diminished TNF-α, IL-6, NO, NLRP3 and IL-1β, as well as enhanced IL-10 and HO-1, by macrophages stimulated with the TLR2 and TLR3 agonists, palmitoyl-3-Cys-Ser-(Lys)4 (PAM3) and polyriboinosinic:polyribocytidylic acid (POLY I:C), in vitro. In silico modeling studies revealed that gedunin efficiently docked into caspase-1, TLR2, TLR3 and to the myeloid differentiation protein-2 (MD-2) component of TLR4. Overall, our data demonstrate that gedunin modulates TLR4, TLR3 and TLR2-mediated responses and reveal new molecular targets for this compound.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app