Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

A-type Lamins Form Distinct Filamentous Networks with Differential Nuclear Pore Complex Associations.

Current Biology : CB 2016 October 11
The nuclear lamina is a universal feature of metazoan nuclear envelopes (NEs) [1]. In mammalian cells, it appears as a 10-30 nm filamentous layer at the nuclear face of the inner nuclear membrane (INM) and is composed primarily of A- and B-type lamins, members of the intermediate filament family [2]. While providing structural integrity to the NE, the lamina also represents an important signaling and regulatory platform [3]. Two A-type lamin isoforms, lamins A and C (LaA and LaC), are expressed in most adult human cells. Encoded by a single gene, these proteins are largely identical, diverging only in their C-terminal tail domains. By contrast with that of LaC, the unique LaA tail undergoes extensive processing, including farnesylation and endo-proteolysis [4, 5]. However, functional differences between LaA and LaC are still unclear. Compounding this uncertainty, the structure of the lamina remains ill defined. In this study, we used BioID, an in vivo proximity-labeling method to identify differential interactors of A-type lamins [6]. One of these, Tpr, a nuclear pore complex (NPC) protein, is highlighted by its selective association with LaC. By employing superresolution microscopy, we demonstrate that this Tpr association is mirrored in enhanced interaction of LaC with NPCs. Further superresolution studies visualizing both endogenous A- and B-type lamins have allowed us to construct a nanometer-scale model of the mammalian nuclear lamina. Our data indicate that different A- and B-type lamin species assemble into separate filament networks that together form an extended composite structure at the nuclear periphery providing attachment sites for NPCs, thereby regulating their distribution.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app