Add like
Add dislike
Add to saved papers

MicroRNA-181b negatively regulates the proliferation of human epidermal keratinocytes in psoriasis through targeting TLR4.

Our study aims to explore the role of microRNA-181b (miR-181b) and TLR in the regulation of cell proliferation of human epidermal keratinocytes (HEKs) in psoriasis. Twenty-eight patients diagnosed with psoriasis vulgaris were selected as a case group with their lesional and non-lesional skin tissues collected. A control group consisted of 20 patients who underwent plastic surgery with their healthy skin tissues collected. Real-time quantitative fluorescence polymerase chain reaction (RT-qPCR), in situ hybridization and immunohistochemistry were used to detect the expressions of miR-181b and TLR4 in HEKs of healthy skin, psoriatic lesional skin and non-lesional skin respectively. The 3' untranslated region (3'UTR) of TLR4 combined with miR-181b was verified by a dual-luciferase reporter assay. Western blotting and bromodeoxyuridine were applied for corresponding detection of TLR4 expression and cell mitosis. The expression of miR-181b in HEKs of psoriatic lesional skin was less than healthy skin and psoriatic non-lesional skin. In psoriatic lesional and non-lesional skin, TLR4-positive cell rates and the number of positive cells per square millimetre were higher than healthy skin. The dual-luciferase reporter assay verified that miR-181b targets TLR4. HEKs transfected with miR-181b mimics had decreased expression of TLR4, along with the decrease of mitotic indexes and Brdu labelling indexes. However, HEKs transfected with miR-181b inhibitors showed increased TLR4 expression, mitotic indexes and Brdu labelling indexes. HEKs transfected with both miR-181b inhibitors and siTLR4 had decreased mitotic indexes and Brdu labelling indexes. These results indicate that miR-181b can negatively regulate the proliferation of HEKs in psoriasis by targeting TLR4.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app