JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Oxygenation of the cerebrospinal fluid with artificial cerebrospinal fluid can ameliorate a spinal cord ischemic injury in a rabbit model.

OBJECTIVE: We evaluated the effect of cerebrospinal fluid oxygenation for the prevention of spinal cord ischemic injury after infrarenal aortic occlusion in a rabbit model.

METHODS: Twenty white Japanese rabbits were categorized into the following 4 groups (5 in each): group S (sham), balloon catheter insertion on to the aorta; group C (control), spinal cord ischemic injury by infrarenal abdominal aortic balloon occlusion for 15 minutes; group N (nonoxygenated), spinal cord ischemic injury with cerebrospinal fluid replacement by nonoxygenated artificial cerebrospinal fluid; and group O (oxygenated), spinal cord ischemic injury with cerebrospinal fluid replacement by nanobubble-oxygenated artificial cerebrospinal fluid. The changes in cerebrospinal fluid partial pressure of oxygen during the peri-ischemic period, modified Tarlov score, and histopathology of the spinal cord 48 hours after aortic maneuvers were evaluated.

RESULTS: Cerebrospinal fluid partial pressure of oxygen significantly increased in group O compared with group N after cerebrospinal fluid replacement (254.5 ± 54.8 mm Hg vs 136.1 ± 43.5 mm Hg, P = .02). After 15 minutes of spinal cord ischemic injury, cerebrospinal fluid partial pressure of oxygen in group C decreased to 65.8 ± 18.6 mm Hg compared with baseline (148.8 ± 20.6 mm Hg, P < .01), whereas cerebrospinal fluid partial pressure of oxygen in group O was maintained at remarkably high levels after spinal cord ischemic injury (291.9 ± 51.8 mm Hg), which was associated with improved neurologic function, with 20% of spinal cord ischemic injury having a Tarlov score less than 5 compared with 100% of spinal cord ischemic injury in group C. Preservation of anterior horn neurons in groups N and O was confirmed by histopathologic analysis with significant reduction of degenerated neurons compared with group C.

CONCLUSIONS: Cerebrospinal fluid oxygenation with artificial cerebrospinal fluid can exert a protective effect against spinal cord ischemic injury in rabbits.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app