Add like
Add dislike
Add to saved papers

Photobiomodulation therapy reduces apoptotic factors and increases glutathione levels in a neuropathic pain model.

Neuropathic pain (NP) is caused by damage to the nervous system due to reactive oxygen spices (ROS) increase, antioxidants reduction, ATP production imbalance, and induction of apoptosis. In this investigation, we applied low-level laser 660 nm (photobiomodulation therapy) as a new strategy to modulate pain. In order to study the effects of photobiomodulation therapy (660 nm) on NP, chronic constriction injury (CCI) model was selected. Low-level laser of 660 nm was used for 2 weeks. Thermal and mechanical hyperalgesia were measured before and after surgery on days 7 and 14, respectively. Paw withdrawal thresholds were also evaluated. Expression of p2x3, Bax, and bcl2 protein was measured by western blotting. The amount of glutathione (GSH) was measured in the spinal cord by continuous spectrophotometric rate determination method. The results are presented as mean ± SD. Statistical analysis of data was carried out using SPSS 21. CCI decreased the pain threshold, 2-week photobiomodulation therapy significantly increased mechanical and thermal threshold, decreased P2X3 expression (p < 0.001), and increased bcl2 expression (p < 0.01), but it was not effective on the Bax expression. We speculated that although photobiomodulation therapy increased ROS generation, it increased antioxidants such as GSH. Increase in bcl2 is another mitochondrial protection mechanism for cell survival and that pain relief and decrease in P2X3 expression confirm it.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app