Add like
Add dislike
Add to saved papers

Noninvasive pulmonary artery pressure monitoring by EIT: a model-based feasibility study.

Current monitoring modalities for patients with pulmonary hypertension (PH) are limited to invasive solutions. A novel approach for the noninvasive and unsupervised monitoring of pulmonary artery pressure (PAP) in patients with PH was proposed and investigated. The approach was based on the use of electrical impedance tomography (EIT), a noninvasive and safe monitoring technique, and was tested through simulations on a realistic 4D bio-impedance model of the human thorax. Changes in PAP were induced in the model by simulating multiple types of hypertensive conditions. A timing parameter physiologically linked to the PAP via the so-called pulse wave velocity principle was automatically estimated from the EIT data. It was found that changes in PAP could indeed be reliably monitored by EIT, irrespective of the pathophysiological condition that caused them. If confirmed clinically, these findings could open the way for a new generation of noninvasive PAP monitoring solutions for the follow-up of patients with PH.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app