JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Different Mechanisms of Longevity in Long-Lived Mouse and Caenorhabditis elegans Mutants Revealed by Statistical Analysis of Mortality Rates.

Genetics 2016 November
Mouse and Caenorhabditis elegans mutants with altered life spans are being used to investigate the aging process and how genes determine life span. The survival of a population can be modeled by the Gompertz function, which comprises two parameters. One of these parameters ("G") describes the rate at which mortality accelerates with age and is often described as the "rate of aging." The other parameter ("A") may correspond to the organism's baseline vulnerability to deleterious effects of disease and the environment. We show that, in mice, life-span-extending mutations systematically fail to affect the age-dependent acceleration of mortality (G), but instead affect only baseline vulnerability (A). This remains true even when comparing strains maintained under identical environmental conditions. In contrast, life-span-extending mutations in C. elegans were associated with decreases in G These observations on mortality rate kinetics suggest that the mechanisms of aging in mammals might fundamentally differ from those in nematodes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app