Add like
Add dislike
Add to saved papers

High sensitive and selective C-reactive protein detection by means of lossy mode resonance based optical fiber devices.

This work presents the development of high sensitive, selective, fast and reusable C-reactive protein (CRP) aptasensors. This novel approach takes advantage of the utilization of high sensitive refractometers based on Lossy Mode Resonances generated by thin indium tin oxide (ITO) films fabricated onto the planar region of d-shaped optical fibers. CRP selectivity is obtained by means of the adhesion of a CRP specific aptamer chain onto the ITO film using the Layer-by-Layer (LbL) nano-assembly fabrication process. The sensing mechanism relies on resonance wavelength shifts originated by refractive index variations of the aptamer chain in presence of the target molecule. Fabricated devices show high selectivity to CRP when compared with other target molecules, such as urea or creatinine, while maintaining a low detection limit (0.0625mg/L) and fast response time (61s). Additionally, these sensors show a repetitive response for several days and are reusable after a cleaning process in ultrapure water.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app