Add like
Add dislike
Add to saved papers

Spinal mitochondrial-derived ROS contributes to remifentanil-induced postoperative hyperalgesia via modulating NMDA receptor in rats.

Neuroscience Letters 2016 November 11
BACKGROUND: Activation of N-methyl-d-aspartate (NMDA) receptor by reactive oxygen species (ROS) in the spinal cord plays an important role in the development of hyperalgesia in several neuropathic pain models. The study examined the involvement of ROS-NMDA signaling pathway in remifentanil-induced postoperative hyperalgesia.

METHODS: Nociceptive responses were measured by paw withdrawal mechanical threshold (PWT) and paw withdrawal thermal latency (PWL) before and up to day 5 after remifentanil infusion. Spinal delivery of MitoSOX red was performed to detect mitochondrial ROS. Changes in expression of NMDA receptor subunits (NR1 and NR2B) in the spinal cord were analyzed by immunofluorescence and Western blotting. Intraperitoneal injection of phenyl-N-tert-butylnitrone (PBN), a non-selective ROS scavenger, was administrated to investigate the role of ROS in remifentanil-induced postoperative hyperalgesia.

RESULTS: Intraoperative infusion of remifentanil induced postoperative mechanical allodynia and thermal hyperalgesia. ROS production, phosphorylated NR1 and NR2B subunits of NMDA receptor were found to be significantly increased in the spinal dorsal horn after intraoperative remifentanil infusion. However, remifentanil-induced postoperative hyperalgesia was suppressed by pretreatment of PBN. In addition, reduction of ROS by PBN prevented enhanced phosphorylation of NR1 and NR2B subunits.

CONCLUSION: These findings indicated that ROS-dependent activation of NMDA receptor in the spinal cord might be a potential mechanism underlying remifentanil-induced postoperative hyperalgesia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app