Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Development of acetophenone ligands as potential neuroimaging agents for cholinesterases.

Association of cholinesterase with β-amyloid plaques and tau neurofibrillary tangles in Alzheimer's disease offers an opportunity to detect disease pathology during life. Achieving this requires development of radiolabelled cholinesterase ligands with high enzyme affinity. Various fluorinated acetophenone derivatives bind to acetylcholinesterase with high affinity, including 2,2,2-trifluoro-1-(3-dimethylaminophenyl)ethanone (1) and 1-(3-tert-butylphenyl)-2,2,2-trifluoroethanone (2). Such compounds also offer potential for incorporation of radioactive fluorine (18 F) for Positron Emission Tomography (PET) imaging of cholinesterases in association with Alzheimer's disease pathology in the living brain. Here we describe the synthesis of two meta-substituted chlorodifluoroacetophenones using a Weinreb amide strategy and their rapid conversion to the corresponding trifluoro derivatives through nucleophilic substitution by fluoride ion, in a reaction amenable to incorporating18 F for PET imaging. In vitro kinetic analysis indicates tight binding of the trifluoro derivatives to cholinesterases. Compound 1 has a Ki value of 7nM for acetylcholinesterase and 1300nM for butyrylcholinesterase while for compound 2 these values are 0.4nM and 26nM, respectively. Tight binding of these compounds to cholinesterase encourages their development for PET imaging detection of cholinesterase associated with Alzheimer's disease pathology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app