Add like
Add dislike
Add to saved papers

Analyzing resilience properties in oscillatory biological systems using parametric model checking.

Bio Systems 2016 November
Automated verification of living organism models allows us to gain previously unknown knowledge about underlying biological processes. In this paper we show how parametric time model checking can be applied to define the time behavior of biological oscillatory systems more precisely. In particular, we focus on the resilience properties of such systems. This notion was introduced to understand the behavior of biological systems (e.g. the mammalian circadian rhythm) that are reactive and adaptive enough to endorse major changes in their environment (e.g. jet-lags, day-night alternating work-time). We formalize these properties through parametric TCTL and investigate the influence of environmental conditions changes on the resilience of living organisms under the uncertainty in parameters. In particular, we discuss the influence of various perturbations, e.g. artificial jet-lag or components knock-out on the parameters controlling the oscillatory behavior. This analysis is crucial when it comes to model elicitation for dynamic biological systems. We demonstrate the applicability of this technique using a simplified model of circadian clock and discuss its results with regard to other previous studies based on hybrid modeling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app