Add like
Add dislike
Add to saved papers

Desoxycorticosterone pivalate-salt treatment leads to non-dipping hypertension in Per1 knockout mice.

AIM: Increasing evidence demonstrates that circadian clock proteins are important regulators of physiological functions including blood pressure. An established risk factor for developing cardiovascular disease is the absence of a blood pressure dip during the inactive period. The goal of the present study was to determine the effects of a high salt diet plus mineralocorticoid on PER1-mediated blood pressure regulation in a salt-resistant, normotensive mouse model, C57BL/6J.

METHODS: Blood pressure was measured using radiotelemetry. After control diet, wild-type (WT) and Per1 (KO) knockout mice were given a high salt diet (4% NaCl) and the long-acting mineralocorticoid deoxycorticosterone pivalate. Blood pressure and activity rhythms were analysed to evaluate changes over time.

RESULTS: Blood pressure in WT mice was not affected by a high salt diet plus mineralocorticoid. In contrast, Per1 KO mice exhibited significantly increased mean arterial pressure (MAP) in response to a high salt diet plus mineralocorticoid. The inactive/active phase ratio of MAP in WT mice was unchanged by high salt plus mineralocorticoid treatment. Importantly, this treatment caused Per1 KO mice to lose the expected decrease or 'dip' in blood pressure during the inactive compared to the active phase.

CONCLUSION: Loss of PER1 increased sensitivity to the high salt plus mineralocorticoid treatment. It also resulted in a non-dipper phenotype in this model of salt-sensitive hypertension and provides a unique model of non-dipping. Together, these data support an important role for the circadian clock protein PER1 in the modulation of blood pressure in a high salt/mineralocorticoid model of hypertension.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app