Evaluation Studies
Journal Article
Add like
Add dislike
Add to saved papers

Lateral flow immunoassay with upconverting nanoparticle-based detection for indirect measurement of interferon response by the level of MxA.

Myxovirus resistance protein A (MxA) is a biomarker of interferon-induced gene expression state involved in many viral infections and some autoimmune disorders. It has a variety of potential utilities in clinical diagnostics, including distinguishing between bacterial and viral infections. Currently, MxA-assays are used for monitoring of IFN-β therapy in multiple sclerosis (MS) patients. As a proof-of-concept for rapid quantitative measurement of interferon response, a lateral flow immunoassay (LFIA) with upconverting nanoparticle (UCNP) reporters was developed and evaluated with clinical whole blood samples to assess the potential for a rapid and user-friendly quantitative assay for MxA, since the currently available rapid test for MxA (FebriDX) produces only qualitative result. The high detection sensitivity enabled by the UCNP reporter technology allowed the sample pre-treatment with dilution of whole blood into lysis buffer at a detectable analyte concentration. The assay can be done within 2 hr and the results correlate with the reference MxA-ELISA, which requires an overnight incubation. With 36 samples, R2 for linear regression was 0.86. The assay detected 96% of the IFN-β responders with 89% specificity using a cut-off level of 100 μg/L for an elevated MxA-concentration. J. Med. Virol. 89:598-605, 2017. © 2016 Wiley Periodicals, Inc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app