Add like
Add dislike
Add to saved papers

New insights about the hydrogen bonds formed between acetylene and hydrogen fluoride: π⋯H, C⋯H and F⋯H.

A theoretical study of hydrogen bond strength and bond properties in the C2 H2 ⋯(HF)-T, C2 H2 ⋯2(HF)-T, C2 H2 ⋯2(HF), C2 H2 ⋯3(HF) and C2 H2 ⋯4(HF) complexes was carried out at the B3LYP/6-311++G(d,p) theory level. In these systems, a strength competition between the π⋯H and C⋯H interactions was examined. Specifically the F⋯H hydrogen bond, its properties were studied through a comparison between the hydrogen fluoride and the higher-order complexes (trimer, tetramer and pentamer). Regarding the electronic properties, the hydrogen bond strength could not be determined by the supermolecule approach. Thus, the hydrogen bond energies were computed via NBO calculations. Additionally to NBO, the ChelpG charge calculations were used to interpret the intermolecular charge transfer. The QTAIM integrations were useful to predict the covalent character of the π⋯H, C⋯H and F⋯H hydrogen bonds. Moreover, values of hybrid orbitals (s and p) and atomic radii were also determined in order to justify the red shifts in the stretch frequencies of the HF bonds.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app