Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Gamma Synchronization Influences Map Formation Time in a Topological Model of Spatial Learning.

The mammalian hippocampus plays a crucial role in producing a cognitive map of space-an internalized representation of the animal's environment. We have previously shown that it is possible to model this map formation using a topological framework, in which information about the environment is transmitted through the temporal organization of neuronal spiking activity, particularly those occasions in which the firing of different place cells overlaps. In this paper, we discuss how gamma rhythm, one of the main components of the extracellular electrical field potential affects the efficiency of place cell map formation. Using methods of algebraic topology and the maximal entropy principle, we demonstrate that gamma modulation synchronizes the spiking of dynamical cell assemblies, which enables learning a spatial map at faster timescales.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app